Geomorphological characterization of channel heads from the La Ventana upper basin (Buenos Aires, Argentina)
DOI:
https://doi.org/10.23854/07199562.2024601.gonzalezKeywords:
flow catchment areas, fluvial morphometry, fluvial geomorphology, ephemeral fluvial environmentsAbstract
Knowing the location of channels heads and the factors that interfere with their formation are of great importance because they affect the length of the channels, drainage density, or delay times of the basin. These factors affect the flash floods that characterize the study area and represent a danger to the local population. Therefore, the objective of this research is to identify and characterize the river heads in a sector of the upper basin of the La Ventana stream (Buenos Aires Province, Argentina) and their relationship with the geomorphological variables that influence their location (height, lithology, area, slope, and length), as well as other local factors. For this analysis, the ALOS PALSAR 12,5x12,5m Digital Surface Model, Google Earth Pro® satellite images, geological charts, and fieldwork were used. This analysis made it possible to find significant physical differences between the streams and catchment areas of the northern and southern slopes of the basin. The interpretation of the results suggests that the physical variables (slope, height, and lithology) independently are not determinants in the formation of the beginning of a channel; rather, they are the interactions that develop between them and other local factors that give rise to the formation of river courses.
Downloads
References
Adams, R.K., y Spotila, J.A. (2005). The form and function of headwater streams based on field and modeling investigations in the Southern Appalachian Mountains. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 30(12), 1521-1546. https://doi.org/10.1002/esp.1211
Albouy, R., y Bonorino, G. (1997). Hidrogeología de la cuenca superior del río Sauce Chico, Sierras Australes, Provincia de Buenos Aires. Revista de La Asociación Geológica Argentina, 52(1), 81–92.
Anderson, V.J., Horton, B.K., Saylor, J.E., Mora, A., Tesón, E., Breecker, D.O., y Ketcham, R.A. (2016). Andean topographic growth and basement uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon river systems. Geosphere, 12(4), 1235-1256. https://doi.org/10.1130/GES01294.1
Beron De La Puente, F., Gil, V., y Viale, M. (2022). Precipitaciones orográficas en el cordón Sierra de la Ventana, Buenos Aires, Argentina. En XIV Jornadas de Geografía Física, Corrientes, República Argentina. Resumen.
Bischetti, G.B., Gandolfi, C., y Whelan, M.J. (1998). The definition of stream channel head location using digital elevation data. En Hydrology, Water Resources and Ecology in Headwaters, 248, 545–525.
Burak, A. (2015). Mapping stream channel head locations in the state of Alabama (Tesis Doctoral). Universidad de Auburn, Alabama, 116 pp.
Campo de Ferreras, A.M., Capelli de Steffens, A., y Diez, P.G. (2004). El clima del Suroeste bonaerense. Ed. Ediuns, Bahía Blanca, 99 pp.
Cappannini, D., Scoppa, C.O., y Vargas Gil, J.R. (1971). Suelos de las sierras australes de la provincia de Buenos Aires. En Reunión Geología Sierras Australes. Comisión Investigaciones Científicas, 203–234.
Casado, A., y Campo, A.M. (2019). Extremos hidroclimáticos y recursos hídricos: estado de conocimiento en el suroeste bonaerense, Argentina. Cuadernos Geográficos, 22(1–2), 6-26. https://doi.org/10.30827/cuadgeo.v58i1.6751
Clubb, F., Mudd, S., Mildowski, D., Hurst, M., y Slater, L. (2014). Objective extraction of channel heads from high-resolution topographic data. Water Resources Research, 50(5), 4283-4304. https://doi.org/10.1002/2013WR015167
Colson, T.P. (2006). Stream network delineation from high-resolution digital elevation models (Ph.D. Dissertation). Department of Forestry y Environmental Resources, North Carolina State University, Raleigh, NC, 241 pp.
Dietrich, W.E., y Dunne, T.D. (1993). The channel head. En K. Beven y M.J. Kirkby (Eds.), Channel Network Hydrology. John Wiley, Nueva York, pp. 175–219.
Dietrich, W.E., Wilson, C.J., Montgomery, D.R., Mckean, J., y Bauer, R. (1992). Erosion thresholds and land surface morphology. Geology, 20(8), 675–679.
García Martínez, B., Gil, V., Carbone, M.E., y Posada Simeón, C. (2016). Caracterización del patrón hidromorfológico del Arroyo de La Ventana en su tramo medio alto (Buenos Aires, Argentina). Estudios Geográficos, 77, 521–541.
Garrett, K.K., y Wohl, E.E. (2017). Climate-invariant area-slope relations in channel heads initiated by surface runoff. Earth Surface Processes and Landforms, 42(11), 1745–1751. https://doi.org/10.1002/esp.4148
Gentili, J.O. (2012). Hidrografía del arroyo Sauce Corto aplicada a peligro de inundaciones y anegamientos (Tesis Doctoral). Universidad Nacional del Sur, Bahía Blanca, 146 pp.
Gentili, J.O., y Gil, V. (2013). Variabilidad temporal de las precipitaciones en vertientes opuestas del Sistema de Ventania, Buenos Aires, Argentina. Revista Universitaria de Geografía, 22(1–2), 147–166.
Gil, V. (2010). Hidrogeomorfología de la cuenca alta del río Sauce Grande aplicada al peligro de crecidas (Tesis Doctoral). Universidad Nacional del Sur, Bahía Blanca, 269 pp.
Gil, V., y Campo, A.M. (2011). Geomorfología de las nacientes del río Sauce Grande. Anales Sociedad Chilena de Ciencias Geográficas, Santiago de Chile, 35–40 pp.
Gil, V., y Campo, A.M. (2012). Geomorfología y procesos de vertiente. Cuenca alta del río Sauce Grande (Buenos Aires, Argentina). Revista Cuaternario y Geomorfología, 26, 133–174.
Gil, V., Gentili, J.O., y Campo, A.M. (2009). Influencia de la litología en la variación de los parámetros morfométricos, Sistema de Ventania, Argentina. Papeles de Geografía, 49–50, 55–68.
González, M.A., Gil, V., y Gentili, J. (2023). Determinación de inicios de cauces a partir de Modelos Digitales de Superficie. Cuenca alta del arroyo La Ventana (Buenos Aires, Argentina). Revista GeoFocus, International Review of Geographical Information Science and Technology, 31, 101-114.
Hancock, G.R., y Evans, K.G. (2006). Channel head location and characteristics using digital elevation models. Earth Surface Processes and Landforms, 31(7), 809–824. https://doi.org/10.1002/esp.1285
Hancock, G.R., y Willgoose, G.R. (2021). Predicting gully erosion using landform evolution models: Insights from mining landforms. Earth Surface Processes and Landforms, 46(15), 3271-3290. https://doi.org/10.1002/esp.5234
Harrington, H.J. (1947). Explicación de las Hojas Geológicas 33m y 34m, Sierras de Curamalal y de la Ventana. SEGEMAR, 61, 42–44.
Henkle, J.E., Wohl, E., y Beckman, N. (2011). Locations of channel heads in the semiarid Colorado Front Range, USA. Geomorphology, 129(3–4), 309–319.
Howard, A.D. (1967). Drainage analysis in geologic interpretation: a summation. AAPG Bulletin, 51(11), 2246–2259.
Istanbulluoglu, E., Tarboton, D.G., Pack, R.T., y Luce, C.H. (2002). A probabilistic approach for channel initiation. Water Resources Research, 38(12), 61-1.
Jarefjäll, A. (2021). Digitizing and Mapping Channel Heads Across Various Forested Regions in Sweden Using a High-Resolution DEM: A Regional Analysis of How Landscape Properties Influencing Channel Head Initiation (Degree Project in Earth Science). Swedish University of Agricultural Sciences.
JAXA (2008). ALOS Data Users Handbook. Earth Observation Research and Application Center Japan Aerospace Exploration Agency, 158 pp. Disponible en: http://www.eorc.jaxa.jp/ALOS/en/doc/fdata/ALOS_HB_RevC_EN.pdf
Jefferson, A.J., y McGee, R.W. (2013). Channel network extent in the context of historical land use, flow generation processes, and landscape evolution in the North Carolina Piedmont. Earth Surface Processes and Landforms, 38, 601–613.
Julian, J.P., Elmore, A.J., y Guinn, S.M. (2012). Channel head locations in forested watersheds across the mid-Atlantic United States: a physiographic analysis. Geomorphology, 177–178, 194–203.
Li, J., Li, T., Zhang, L., Sivakumar, B., Fu, X., Huang, Y., y Bai, R. (2020). A D8-compatible high-efficient channel head recognition method. Environmental Modelling and Software, 125, 1–13.
Michalijos, M.P. (2018). Estudio del riesgo de incendio forestal en un sector de la Comarca de la Sierra de la Ventana utilizando geotecnologías (Tesis Doctoral). Universidad Nacional del Sur, Bahía Blanca, 229 pp.
Montgomery, D.R., y Dietrich, W.E. (1988). Where do channels begin? Nature, 336, 232–234.
Montgomery, D.R., y Dietrich, W.E. (1989). Source areas, drainage density, and channel initiation. Water Resources Research, 25(8), 1907–1918.
Montgomery, D.R., y Dietrich, W.E. (1992). Channel Initiation and the Problem of Landscape Scale. Science, 255(504), 826–830.
Ollero, A., Conesa García, C., y Vidal-Abarca, M.R. (2021). Buenas prácticas en gestión y Restauración de cursos efímeros Mediterráneos: Resiliencia y adaptación al Cambio climático. Universidad de Murcia, Murcia.
Orlandini, S., Tarolli, P., Moretti, G., y Dalla Fontana, G. (2011). On the prediction of channel heads in a complex alpine terrain using gridded elevation data. Water Resources Research, 47, W02538. https://doi.org/10.1029/2010WR009648
Placzkowska, E., Cebulski, J., Bryndza, M., Mostowik, K., Murawska, M., Rzonca, B., y Siwek, J. (2021). Morphometric analysis of the channel heads based on different LiDAR resolutions. Geomorphology, 375, 107–546.
Portilla, O., Leiva, C., Luna, M., y González, I. (2023). Evaluación de los modelos digitales de terreno y geopotenciales en el Ecuador. LA GRANJA. Revista de Ciencias de la Vida, 38(2), 59-81. https://doi.org/10.17163/lgr.n38.2023.05
Quesada-Román, A., y Zamorano Orozco, J.J. (2019). Peligros Geomorfológicos en Costa Rica: Cuenca Alta del Río General. Anuário do Instituto de Geociências, 41(3), 239-251.
Sellés-Martínez, J. (2001). Geología de la Ventania (Provincia de Buenos Aires, Argentina). Journal of Iberian Geology, 27, 43-69.
Senciales González, J.M. (1999). Redes fluviales. Metodología de análisis. Ed. Universidad de Málaga, Málaga, 337 pp.
Shavers, E., y Stanislawski, L.V. (2020). Channel cross-section analysis for automated stream head identification. Environmental Modelling and Software, 132, 104-809.
Volonté, A. (2017). Geomorfología fluvial aplicada al peligro de crecidas. Cuenca del arroyo San Bernardo, Sistema de Ventania, Argentina (Tesis Doctoral). Universidad Nacional del Sur, Bahía Blanca, 169 pp.
Volonté, A., y Gil, V. (2019). Aportes de la hidrogeomorfología histórica en la determinación de áreas inundables a partir de eventos extremos de crecidas. Huellas, 23(1), 11-26.
Walker, S.J., Wilkinson, S.N., Van Dijk, A.I.J.M., y Hairsine, P.B. (2020). A multi-resolution method to map and identify locations of future gully and channel incision. Geomorphology, 358, 107–115.
Willgoose, G.R., Hancock, G.R., y Kuczera, G. (2003). Variability of catchment statistics. Ed. American Geophysical Union, Washington, 217 pp.
Willgoose, G., Bras, R.L., y Rodriguez-Iturbe, I. (1991). A coupled channel network growth and hillslope evolution model: 1. Theory. Water Resources Research, 27(7), 1671–1684.
Willgoose, G., Bras, R.L., y Rodriguez-Iturbe, I. (1992). The relationship between catchment and hillslope properties: implications of a catchment evolution model. Geomorphology, 5(1–2), 21–37.
Wohl, E. (2018). The challenges of channel heads. Earth-Science Reviews, 185, 649-66.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Geográfica de Chile Terra Australis
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright notice:
Revista Geográfica de Chile Terra Australis retains the economic rights (copyright) of the works published in the Revista Geográfica de Chile Terra Australis. The reuse of the content is allowed under a license:
CC BY
Recognition
This license allows others to distribute, remix, tweak and build upon your work, even for commercial purposes, as long as you are acknowledged as the author of the original creation. This is the most helpful license offered. It is recommended for maximum dissemination and use of the materials subject to the license.