Search of Circular Surface Landforms with Negative Topography Associated with Geological Processes in a Physical Geography Framework within the Province of Pichincha, Ecuador.
DOI:
https://doi.org/10.23854/07199562.2024601.herreraKeywords:
geometric signature, circular landform, digital surface model, geological processes, geometric information systemAbstract
The circular surface landforms with negative topography are the result of the interaction of factors of natural origin associated with active and inactive geological processes; therefore, if these processes occur again, they would generate events that may constitute a threat to the population, the means of production and the environment, making it necessary to identify, define and spatially locate these structures in the territory. This study is a first approximation of achieving this purpose through compositions of geometric signatures using the variables of slope, texture, convexity, concavity, valley depth, convergence index and analytical hillshading in the SAGA 7.8.2 software. The procedure carried out began with the recognition of circular landforms with positive topography as volcanic structures and their main characteristics (drains, slopes, craters, escarpments, erosion marks, among others), these already identified structures allowed us to collect useful information to define circular landforms with negative topography delimiting a large erosion zone in the northeastern study area. However, the need to determine an automatic procedure that allows the identification of target structures in an automated way, through the use of geographic information systems is confirmed.
Downloads
References
Bartali, R., Dobarganes, J., Pérez, P., & Rico, C. (2018). Asteroides, cráteres de impacto y recursos naturales. Disponible en: https://www.researchgate.net/publication/328812918_Asteroides_Crateres_de_Impacto_y_Recursos_Naturales
Benito-Calvo, A., Gutiérrez, F. J., Carbonel, D., Desir, G., Guerrero, J., Magri, O., & Fabregat González, I. (2016). Measuring deformation related to active sinkholes with ground-based 3D laser scanner. A case study in the evaporite karst of the Ebro Valley, NE Spain. Málaga: Instituto Geológico y Minero de España. Disponible en: http://cir.cenieh.es/handle/20.500.12136/722
Bolongaro-Crevenna, A., Torres-Rodriguez, V., Sorani, V., Frame, D., & Ortiz, M. A. (2005). Geomorphometric analysis for characterizing landforms in Morelos State, Mexico. Geomorphology, 67, 407-422. Disponible en: https://doi.org/10.1016/j.geomorph.2004.11.007
Carricondo, J. (2010). La provincia de Ciudad Real como recurso didáctico en el ámbito de la geología. Valoración de la actividad didáctica desarrollada en los museos y centros de interpretación. Universidad de Granada, Departamento de Didáctica y Organización Escolar. Granada. Disponible en: https://digibug.ugr.es/bitstream/handle/10481/15713/19492212.pdf?sequence=1&isAllowed=y
De Pedraza Gilsanz, J. (1996). Geomorfología: principios, métodos y aplicaciones. Madrid: Editorial Rueda. Disponible en: https://www.researchgate.net/profile/Javier-De-Pedraza/publication/235864020_Geomorfologia_Principios_Metodos_y_Aplicaciones_Texto/links/5ebbb2bc299bf1c09ab944cf/Geomorfologia-Principios-Metodos-y-Aplicaciones-Texto.pdf
Duque Escobar, G. (2022). Manual de geología para ingenieros. Universidad Nacional de Colombia - Sede Manizales. Disponible en: https://repositorio.unal.edu.co/handle/unal/3145
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., & Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45. Disponible en: https://doi.org/10.1029/2005RG000183
Gobierno Autónomo Descentralizado Provincial de Pichincha (GADPP). (2015). Plan Metropolitano de Desarrollo y Ordenamiento Territorial. Disponible en: https://www.emaseo.gob.ec/documentos/lotaip_2015/s/actas_y_resoluciones/Plan_Metropolitano_Desarrollo_y_Ordenamiento_Territorial_DMQ_2015_2025.pdf
Griem, W. (2020). Geología Estructural Virtual. Apuntes Geología Estructural y Tectónica. Disponible en: https://www.geovirtual2.cl/Geoestructural/Intro01.htm
Junko, I., & Pike, R. (2007). Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology, 86, 409-440. Disponible en: https://doi.org/10.1016/j.geomorph.2006.09.012
López, D. (2006). Desarrollo e implementación de un modelo para la clasificación automática de unidades de relieve a partir de modelos digitales de elevación. CENTROGEO, México. Disponible en: https://centrogeo.repositorioinstitucional.mx/jspui/handle/1012/15
Pike, R. (1988). The geometric signature: quantifying landslide-terrain types from digital elevation models. Mathematical Geology, 20, 491-511. Disponible en: https://doi.org/10.1007/BF00890333
Ulloa, A., Aguilar, T., Goicochea, C., & Ramírez, R. (2011). Descripción, clasificación y aspectos geológicos de las zonas kársticas de Costa Rica. Revista Geológica de América Central, 45, 53-74. Disponible en: https://doi.org/10.15517/rgac.v0i45.1910
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Geográfica de Chile Terra Australis
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright notice:
Revista Geográfica de Chile Terra Australis retains the economic rights (copyright) of the works published in the Revista Geográfica de Chile Terra Australis. The reuse of the content is allowed under a license:
CC BY
Recognition
This license allows others to distribute, remix, tweak and build upon your work, even for commercial purposes, as long as you are acknowledged as the author of the original creation. This is the most helpful license offered. It is recommended for maximum dissemination and use of the materials subject to the license.